Impact Resistant Composite Structures for Space Suit Applications, Phase I

Completed Technology Project (2017 - 2017)

Project Introduction

Composites Automation (CA) and partners University of Delaware Center for Composite Materials (UD-CCM) and ILC Dover, propose to evaluate innovative composite material and structure concepts that improve impact performance for space suite hard composite components. A systematic experimental screening methodology in Phase I, followed by detailed design and assessment in Phase II. Material innovations evaluated in this effort include hybrid laminate constructions, interlayers and thin-ply composite laminates; as well as potential synergistic combinations. A Low-Velocity Impact (LVI) protocol will be used in combination with leak resistance checks to evaluate concepts and guide composite design. A two-stage methodology is proposed with initial screening of concepts under equivalent conditions for comparative assessment, followed by performance limit assessment (maximum impact energy with no leak).

Primary U.S. Work Locations and Key Partners

Organizations Performing Work	Role	Туре	Location
Composites	Lead	Industry	Newark,
Automation, LLC	Organization		Delaware
Johnson Space	Supporting	NASA	Houston,
Center(JSC)	Organization	Center	Texas

Impact Resistant Composite Structures for Space Suit Applications, Phase I Briefing Chart Image

Table of Contents

Project Introduction	
Primary U.S. Work Locations	
and Key Partners	1
Images	2
Organizational Responsibility	
Project Management	
Technology Maturity (TRL)	
Technology Areas	

Impact Resistant Composite Structures for Space Suit Applications, Phase I

Completed Technology Project (2017 - 2017)

Primary U.S. Work Locations		
Delaware	Texas	

Images

Briefing Chart Image

Impact Resistant Composite Structures for Space Suit Applications, Phase I Briefing Chart Image (https://techport.nasa.gov/image/130350)

Organizational Responsibility

Responsible Mission Directorate:

Space Technology Mission Directorate (STMD)

Lead Organization:

Composites Automation, LLC

Responsible Program:

Small Business Innovation Research/Small Business Tech Transfer

Project Management

Program Director:

Jason L Kessler

Program Manager:

Carlos Torrez

Principal Investigator:

Roger Crane

Technology Maturity (TRL)

Small Business Innovation Research/Small Business Tech Transfer

Impact Resistant Composite Structures for Space Suit Applications, Phase I

Completed Technology Project (2017 - 2017)

Technology Areas

Primary:

- TX06 Human Health, Life Support, and Habitation Systems
 - □ TX06.2 Extravehicular Activity Systems
 - ☐ TX06.2.1 Pressure Garment

